If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-3t=0
a = 3; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·3·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*3}=\frac{0}{6} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*3}=\frac{6}{6} =1 $
| 6+9x=11/3x | | 5p+7=-18 | | p–8=-2 | | 0.2x=-20* | | 11/y=55 | | 0.5x=-10* | | 16r−15r−1=11 | | 4)12=5x+2 | | 0.33x=20* | | |x2+8x|=5x+40 | | 3)4x-3=25 | | 0=-16t²+32t+256 | | x3x=6 | | 2•5^x=120 | | 180=10+5x-5 | | 32-8x=7x+@ | | 7x-22=5x-10 | | 180=3x+15+x | | (1/2)2x=204°(1/2) | | 12^-8x=4 | | 6^-p=36 | | 4^-p=64 | | 2n+3=n^2 | | 180=45+x+x | | 3x-11=-1 | | 12-4=6r+2 | | 180=84+48+x | | 5b-7=35 | | 0.5/x=8 | | (2x-19)=180 | | 180=53+37+x | | 5n+7=7n(n+1)-2n |